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High Density Breakwater Armour Unit Project — with CRC-LCL and NSW Ports
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High density
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Conventional
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Technical Specification

Section 1: Scope and General

Section 2: | Specification and supply of :
i geopolymer and alkali- '
i activated binder concrete

----------------------------------------------------------------

Section 3: Design procedures, actions
and loads.

..............................................................

Performance-based — provides Section 4: DeS|gr.1 Tropertles of :
a roadmap on how to quickly materials

introduce new/novel materials Section 5: i Design for durability
into practice!

DR SATS 199:2023, Design of geopolymer and alkali activated binder
concrete structures

.................................................................

Section 6: Design for fire resistance
Section 7: Design for strength
Section 8: Field testing of geopolymer

and alkali activated binder
w ) concrete binder systems.
STANPRSDS— App. A: Procedure for

determination of risk of
efflorescence
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Consideration of Creep

[1 418 Creep

4.1.8 Creep

4.1.8.1 General

29 SATS 199:2023
te = time at transition.
aand b = coefficients,
Pech is determined from the total creep strain (e..) determined from testing by subtracting

the initial elastic strain due to the applied load and the shrinkage strain that occurs
after the application of the load.

Shrinkage control specimens should be cured under the same environment as the creep test.
The transition time (t¢), shown in Figure 4.1, is the time at which the creep coefficient becomes

approximately linear with log (t). This transition time shall be determined from testing. The transition
time need not be taken as greater than t. = 180 days.

Peco

(b) by tests in accordance with AS 1012.16 and tested for a minimum of 90 days after application
of the loading at a relative humidity consistent with determination of ¢4 in Clause 4.1.8.3.

[ 53 Exposure
v m 54 Requirements for A1, A2,
m 54.1 Minimum strength and curing require
[d 54.2 Control of alkali cation leaching and efflorescence
[] 5.5 Requirements for concrete for exposure classification U
v [ 56 Atmospheric carbonation
[d 56.1 Performance requirements for atmospheric carbonation
[d 562 Accelerated testing protocol for carbonation
[d 563 Performance-based requirements for carbonation
v m 5.7 Concrete structures in aggressive soils
[ 57.1 sulfate attack
[l 572 Acidic environments
[l 573 Saline soils
m 5.8 GPC and AABC structures in marine environments
[A 59 GPC and AABC structures in sewage and wastewater environments
D 5.10 Alkali aggregate reactivity (AAR)
m 5.11 Freezing and thawing
D 5.12 Abrasion

[ 5.13 Restrictions on chemical content in concrete

(b) by tests in accordance with AS 1012.16 and tested for a minimum of 90 days after application
of the loading at a relative humidity consistent with determination of c4 in Clause 4.1.8.3.

From the results of the creep testing undertaken in accordance with AS 1012.16, the test creep strain at
time (t) after loading may be calculated from the following:

For 1 <t < tcdays:
Pecy (1) =ar” 4.1.8.2(a)
For t > tc days:
—— b ;
Qeep ()= aty + abty [In(t)—In(t,)] 4.1.8.2(b)
where

t = time in days after loading.

© Standards Australia Limited 2023

'C
log (t)

Figure 4.1 — Relationship between creep coefficient and log(time) locations

The coefficients a and b in Equation 4.1.8.2(a) are obtained from test data and determined from the
following:

_Pech (12)
a=

" 41.8.2(0)
log[@((’;,;]
b =—\Pecbllt) 4.1.8.2(d)
log(r2/11)

where t1 = 14 days after loading and t3 is not less than 56 days after loading.
Itis recommended that t2 be taken at 90 days after loading.

For building structures, the basic creep strain shall be determined at a time equal to 50 years
(t = 18,000 days).

@© Standards Australia Limited 2023

For background, see:

GAO, H., AL-DAMAD, I|., HAMED, E., HAIMOHAMMADI, A., AND FOSTER, S., “Creep of Geopolymer and Alkali Activated Binder Concrete: Comparison with OPC Concrete and Design Codes”,
Concrete 2023, 31st Biennial National Conference of the Concrete Institute of Australia, Sydney, 10 — 13 September, 2023, 8 pp.
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DEVELOPMENT OF A HIGH MODULUS, VERY HIGH
STRENGTH, HIGH PERFORMANCE, SUPER-WORKABLE
LOW CARBON CONCRETE

Howard Titus! Mario Tabone! John Biondo' and Stephen Foster?

! Boral Concrete Australia
2School of Civil and Environmental Engineering, UNSW Sydney, Australia

Abstract:

This study reports on the development of a High Mod-E, high performance, super-workable low carbon
concrete known as Aspire®. With 40% cement replacement, strengths exceeding 120 MPa and elastic
moduli of greater than 50 GPa are achieved. The combination of high-strength with high-stiffness
allows for significant reductions in the thickness of vertical elements in tall and slender buildings, while
mamtaining the lateral stiftness required for wind induced vibrations; thus, increasing valuable floor
space, reducing concrete, reinforcement, formwork and labour costs. Laboratory and field trials
demonstrate that the material has low shrinkage and is pumpable to heights exceeding 250 metres. This
paper reports on the outcomes of laboratory and field trials, including pumping to Level 78 on the
Victoria One building, Melbourne; an industry first for Australia.
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Comparison of Model for OPC Concretes: Taerwe data
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Final comments

Regulation - sensible, looking after the public good but not to be so
burdensome such as to inhibit innovation.

Standardisation - speedy implementation, performance based, founded in
science.

Innovation - solutions that push boundaries, embrace calculated risks,
and not afraid of failure.
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