

INTRODUCTION

Prior to the construction of the Tallowa Dam, an investigation of the properties of the aggregate proposed for use was undertaken by the Snowy Mountains Engineering Authority (SMEC), starting in 1969.

Because the aggregate was found to have the potential for alkali aggregate reaction (AAR), it was decided to

use fly ash in the concrete in conjunction with Type C (low heat) cement.

Concrete was to have a design compressive strength of $2000lbf/in^2$ (14 MPa) at one year. The objective of this case study is to review some of the test data generated, particularly in regard to permeability. For convenience, the old data has been converted to SI units.

W/C	Water	Fly Ash	Cement	Air %	Slump	Compressive Strength, MPa		
	kg	kg	kg		mm	90 days	9 months	
Non-air								
0.65	183		281	1.7	50	30.4	34.2	
0.7	183		261	2.0	44	26.3	27.0	
1.75	183		244	2.0	50	20.0	24.4	
Air								
0.65	148		227	5.7	44	18.2	19.4	
0.7	148		211	5.7	50	16.6	19.2	
0.75	148		196	6.0	32	14.7	17.2	
Air+Fly Ash								
0.65	139	70	143	6.4	50	13.7	22.7	
0.7	139	65	133	5.4	25	12.7	23.3	
0.75	139	61	124	6.5	50	11.3	20.2	

DETAILS OF CONCRETE

PERMEABILITY

Three types of concrete were tested, namely plain low heat, air entrained low heat and air entrained low heat with 33 % of the cement replaced by fly ash. For each type, concrete was prepared at 0.65, 0.70 and 0.75 water/cementitious material ratios.

After curing for 6 months and 9 months, pressure equivalent to 70 m of head was applied and readings taken of flow of water along a graduated nylon tube. For simplicity, results are shown only for the nine month situation, in the figures overleaf.

Elapsed		W/C 0.65		W/C 0.75			
Time Hours	Non-air	Air	Air	Non-air	Air	Air	
	No fly ash	No fly ash	Fly ash	No fly ash	No fly ash	Fly ash	
45	18	49	6	26.5	39	8.5	
162	43	105	12	73	102	15.5	
349	79	180	16	136	182	21	
467	97	218	18	174	230	23	
659	126	277	22	227	300	26.5	
892	154	336	24	291	378	29.5	
1204	200	426	28	390	495	34	
1366	220	470	30	438	555	35	

SUMMARY OF READINGS AFTER 9 MONTHS CURING - INFLOW, ML

PERMEABILITY INFLOW READINGS AT 9 MONTHS

DISCUSSION

In view of the fly ash concretes having lower binder content and lower strength than the control mixes, the improved resistance to water inflow is impressive. If the comparison is made against the air entrained mixes without fly ash, both the strength performance and relative impermeability are outstanding.

Almost thirty years later, the situation has changed for the better. Fly ash generally available in the 1990's in Australia is much improved from that on offer in 1969. These days, loss on ignition of the ash commercially available is commonly below 2% and the fly ash is generally finer and hence more reactive.

SIGNIFICANCE OF LOW PERMEABILITY

In some situations, such as water-retaining structures, low permeability is of importance directly. In most other situations, low permeability is desirable indirectly. Water is involved in both the good and bad things that happen in concrete. Without water for setting and hardening, concrete would not exist at all. Moist curing is still the optimum means of getting the best from concrete.

On the down side,

- damage from freezing and thawing,
- alkali aggregate reaction,
- sulphate attack,
- corrosion of steel reinforcement,

all require the presence of water to proceed. Drying shrinkage cracks result from evaporation of surplus water (water of convenience) from the concrete.

When concrete is properly proportioned with fly ash, the unit water content is reduced, with attendant reduction in shrinkage potential and permeability. Because the concrete is watertight and has less cracking, the potential for the normal threats to durability, outlined above, is minimized. Fly ash concrete is durable concrete.

The assistance of Sydney Water in preparing this study is gratefully acknowledged.

ASH DEVELOPMENT ASSOCIATION OF AUSTRALIA

GPO BOX 5257, SYDNEY 2000, NSW AUSTRALIA

Supported by: