

ASH Development Association of Australia

Ash Development Association of Australia Inc PO Box 1194 Wollongong NSW 2500 Telephone: +61 2 4228 1389 Facsimile: +61 2 4228 1777 Mobile: 04-1888 5290 email: adaa@adaa.asn.au

Ash Development Association of Australia

Coal Combustion Product (CCP)

Environmental Testing Programme 2003/2004

March 2004

MOEYAN MANAGEMENT PTY. LIMITED ARBN:77 092 978 035

> Office Suite 1 42 Ramah Avenue Mt Pleasant NSW 2519

Phone: 02 4285 0336 Mobile: 0408 853 558 Email: MOEYAN@bigpond.com

Table of Contents

G	lossar	y	3
E	xecuti	ve Summary	4
1	Intr	oduction	6
2	Site	e Identification and Characteristics	7
3	Obj	ective of Scope of Work	7
4	San	npling and Analysis Procedures	B
	4.1 4.2 4.3	Site Sampling Procedures	9
5	Crit	eria12	2
6	Ana	alytical Results1	3
	6.1 6.2 6.3 6.4	Total Metals (Cd, Pb, Hg) 12 Leachate (TCLP) Results 14 Dioxin and Furans 14 Sizing Analysis 14	4 4
7	Dis	cussion of Results1	5
	7.1 7.2 7.3 7.4	Total Metals15Leachate Results16Dioxin and Furans16Sizing Analysis16	6 6
8	Cor	nclusions17	
	8.1 8.2 8.3	Beneficial Use of CCPs in Agricultural Performance	7
9	Rec	commendations17	7

ATTACHMENTS

Attachment A – TCLP results 1993 to 2001 and 2003 including summary sheet Attachment B – Determination of total metals results Attachment C – PCDD's and PCDF's results Attachment D – Sizing Distribution Analysis

Glossary

Term	Definition
AS	Australian Standard
ССР	coal combustion product
Chain of Custody (COC)	Documentation which accompanies samples to reduce the potential for loss or erroneous labelling or analysis reporting
DEC	Department of Environment and Conservation of New South Wales replaced the Environment Protection Authority (EPA) and National Parks and Wildlife Service (NPWS) and Resource NSW.
ISO	International Standards Organisation
I-TEQ	The total toxic equivalence relating to dioxins and furans in this report.
leachate	The water solution containing the released substance.
NATA	National Association of Testing Authorities
ng/g	nano grams per gram or 1 x 10 ⁻⁹
pg/g	pico grams per gram or 1 x 10 ⁻¹²
QA / QC	Quality Assurance. Quality Control
TCLP	Toxicity Characteristic Leaching Procedure – a method of determining the release of a substance via exposure to water solution.
USEPA	United States Environment Protection Agency
WHO	World Health Organisation

Executive Summary

As part of its Research and Development Programme for 2003/2004 the Ash Development Association of Australia (ADAA) requested the development and implementation of an environmental investigation programme into coal combustion products (CCPs). The aim of this investigation was to collate and interpret the analytical knowledge on its members' CCPs through a coordinated sampling, analysis and reporting programme.

The programme investigated the chemical characteristics of ash from several ash producer and handlers, which will assist the Association in identifying alternative uses to which ash products can be used as a secondary resource.

The methodology consisted of collecting fine, medium, coarse and bottom ash samples from ADAA members throughout Australia. The geographic distribution of members is shown in **Figure 1**.

After the programme had started the NSW Department of Environment and Conservation (DEC) - already consulting the ADAA on the use of ash in agriculture - provided further criteria for total metals, dioxins and furans. A selection of these samples was then subjected to the additional analytes.

The samples were analysed for a range of metals (total and leachate), dioxins and furans. Fifty four (54) samples were tested for leachate and thirteen (13) were selected for total metals analysis. Three (3) were analysed for dioxins and furans.

In summary,

- Total metal results for Cadmium (Cd), Lead (Pb) and Mercury (Hg) were within the proposed guidelines (Fertiliser Act 1985) nominated by DEC.
- All leachate results, under the worse case scenario, were either below or just above the laboratory detection limit for each analyte and so were well within the maximum acceptance criteria. Since many results were reported as the limit of detection, no statistical analysis would be useful.
- Leachate results from the previous investigations (1993 2001) were also low, either below or slightly above the detection limit, for the same range of analytes.
- All three samples tested for dioxins and furans met the 100 pg/g criterion.

These investigations are an important step towards demonstrating the responsible and environmentally sustainable use of CCPs for applications, but not limited to, civil engineering fills, raw materials for the cement and concrete industries and for agricultural and horticultural purposes.

These results coupled with agreed ongoing investigation methods will assist regulatory authorities and the ADAA with the scientific evidence required for the appropriate handling and application of CCPs as a secondary resource.

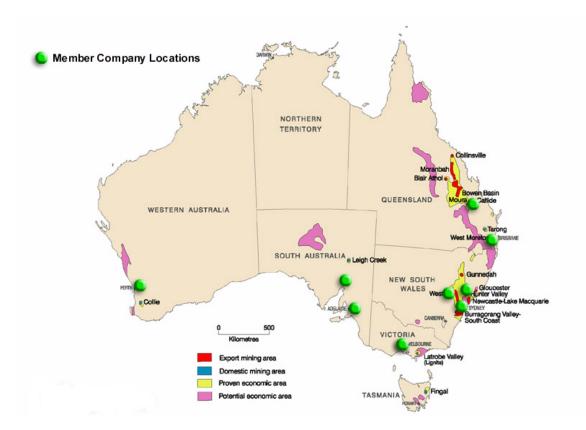


Figure 1 Distribution of Members

1 Introduction

The Ash Development Association of Australia (ADAA) has undertaken an extensive analysis investigation into the metal concentration and leachability of those metal species from coal combustion products (CCPs) using the USEPA TCLP and total methods¹. The aim of this investigation is to collate and interpret the analytical knowledge on its members' CCPs through a co-ordinated sampling, analysis and reporting programme, building on information collected in previous years.

Moeyan Management Pty. Limited was commissioned to manage the sampling and analysis programme and prepare this report.

The findings will be used to produce important benchmarks to underpin ADAA's case for ash reuse in applications where significant environmental interactions may occur, e.g. agriculture.

All data has been treated with strict confidentiality and no published results identify individual participants. Participating members were provided with a unique identifier (client code) to assist with distinguishing their respective material/s for internal assessment purposes and for comparison against other ash sources from throughout Australia.

The participants in this sampling programme are listed below:

Generator	Ash Marketer
CS Energy (QLD)	• Flyash Australia (NSW, SA)
NRG Flinders (SA)	 Pozzolanic Enterprises (QLD)
Pacific Western (WA)	Blue Circle Ash (NSW)
Western Power (WA)	 Adelaide Brighton Cement Limited (SA, WA & NSW)
Delta Electricity (NSW)	Hyrock (NSW)
Tarong Energy (QLD)	
Eraring Energy (NSW)	

¹ Method: USEPA method 200.2 (modified) for determination of total metals and TCLP method 1311 for leachate

2 Site Identification and Characteristics

Each site was allocated a unique client code known to only them, Moeyan Management and the ADAA CEO. This system allows each site to view their results and compare these to the complete data set.

The code consisted of a *two-digit number* for each participant and then a *sub-classification code* with fly ash samples coded according to fine (FAF), medium (FAM), coarse (FAC). Bottom ash is simply (BA).

In some cases individual producers used terms more meaningful to their site, or where the classification was unclear were tagged 'X'.

3 Objective of Scope of Work

This programme investigated the chemical characteristics of ash from the range of participants and locations, which will assist the Association in identifying alternative uses to which ash products can be used as a secondary resource.

The programme originally consisted of collecting fly ash of fine, medium, coarse grades² and bottom ash samples from as many ADAA members as possible. These samples were then to be analysed for a range of leachable metals.

However, after the programme had started the DEC who was already in discussion with the ADAA on ash use for agricultural application, nominated total metals, dioxins and furans criteria. A selection of the already collected samples was then subjected to the additional analyses.

Also stemming from the total metal analyses a further three (3) samples of bottom ash were analysed for the total metals, and seven (7) samples were analysed for fineness by mass passing 45 μ m sieve to investigate whether metals (particularly Hg) had a tendency to move to bottom ash; and whether size fractions of fly ash influenced metal concentration.

All of these new results were compiled with leachate data previously gathered by the Association and assessed against current criteria.

² AS 3582.1—1998 has a table on page 8 describing ash grades.

4 Sampling and Analysis Procedures

4.1 Site Sampling Procedures

Each site was briefed on sampling procedures. Fly ash samples were to be taken in accordance with the following standards:

- AS 1199 Sampling procedures and tables for inspection by attributes
- AS 1399 Guide to AS 1199

Each sample was to be collected and segregated based on its grading according to AS 3582.1—1998 - Supplementary cementitious materials for use with portland and blended cement Part 1: Fly ash.

An extract from this Standard is provided from the Association's copy below.

Grade	Fineness, by mass passing 45 µm sieve, % minimum	Loss on ignition, % maximum	Moisture content % maximum	SO ₃ content, % maximum
Fine	75	4.0	1.0	3.0
Medium	65	5.0	1.0	3.0
Coarse	55	6.0	1.0	3.0
Reference test method	AS 3583.1	AS 3583.3	AS 3583.2	AS 3583.8

TABLE 1 SPECIFIED REQUIREMENTS

Bottom ash samples were to be taken in accordance with the following standard:

 AS 1141.3.1 – Methods for Sampling and Testing Aggregates 1996 (Method 3.1- Sampling Aggregates: Section 6.9 - Sampling from Stockpiles)

An extract from the Standard is shown overleaf:

Generally samples from the surface of the stockpiles are not representative. Approximately 200mm of surface material should be removed and samples taken from the fresh exposed face. Increment sampling should be carried out in various locations and at various heights on the sides of the perimeter of the stockpile. This approach ensures the whole stockpile is being sampled and not one section only. Samples should then be placed in the supplied jars and labelled accordingly.

Samples of approximately 200 – 500g must be placed in unused clean containers and sealed with screw cap or equivalent to withstand transportation to the laboratory. Each container should be clearly labelled with the required information.

A Chain of Custody form was filled in and despatched with each set of samples.

4.2 Laboratory Procedures

Laboratory procedures for analysis of total metals and TCLP were conducted by ALS Environmental.

ALS operates a management system that complies with the requirements of ISO 9001:2000 for the provision of inorganic and organic environmental analysis services. Company wide quality procedures have been established to control and monitor all generic aspects of the company's operations and all laboratories operate according to the guidelines set out in ISO/IEC 17025.

ALS is NATA (National Association of Testing Authorities) accredited for a range of inorganic and organic analyses, including the procedures conducted for this programme.

The laboratory procedures used for each analysis are summarised below:

- For total metals samples were digested by USEPA method 200.2 (modified) and the results reported on a dry weight basis.
- USEPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP)

This method is the most widely used leachate procedure. The buffering solutions (pH 4.93 and 2.88) used in the TCLP were designed specifically to simulate landfill conditions. This rather conservative approach was designed to accommodate the acidic conditions typically found in a putrescible waste landfill. If the analysed material is being used for any other application the results need to be considered carefully as they are

providing a worse case scenario. If the application does not involve an acidic environment or co-disposal with putrescible material these results may be not be adequately representative of what will occur once the material is applied.

The dioxin and furan analyses were conducted by AgriQuality. The analysis method is based on USEPA method 1613B (Isotope Dilution) for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).

The laboratory holds the following accreditations for these procedures

- ISO 17025 through IANZ (International Accreditation New Zealand) for persistent organic pollutants, a wide range of other environmental contaminants and test types. This is recognised by NATA via a Mutual Recognition Agreement, and all reports carry both the NATA and IANZ logos.
- WHO Accreditation for the assessment of dioxins, furans and polychlorinated biphenyls in human serum, breast milk, cow's milk and fish.
- WHO recognized Centre of Expertise for dioxins, furans and polychlorinated biphenyls.

4.3 Quality Control / Quality Assurance Procedures

Australian Laboratory Services (ALS) conducted the total metal and leachate analysis for this programme. The QA / QC programme implemented by ALS is summarised below.

ALS employ full time externally trained QA/QC Chemists to maintain the quality system, monitor results and conduct audits. The QA/QC Chemist has a line responsibility to the quality department and reports through to the company quality manager.

Quality Systems (ISO 9001) - ALS operates a management system that complies with the requirements of ISO 9001:2000 for the provision of inorganic and organic environmental analysis services. Company wide quality procedures have been established to control and monitor all generic aspects of the company's operations and all laboratories operate according to the guidelines set out in ISO/IEC 17025.

ALS Environmental (Sydney) laboratory is NATA (National Association of Testing Authorities) accredited for a comprehensive range of inorganic and organic analyses.

Laboratory Quality Control - Comprehensive QA/QC programs have been established to monitor and control every aspect of the operation and regulate all ALS laboratory procedures. QA/QC procedures are designed to provide reliable analytical results to our clients.

AgriQuality conducted the dioxin and furan analyses for this programme. The QA/QC programme was in accordance with USEPA methods. These include the following:

Use of laboratory blanks

Calculation of compound recovery rates

Strict requirements for sample storage and holding times.

The full breakdown of the analytical results for the QA/QC and NATA laboratory reports for the following analyses are available as follows;

Attachment A – TCLP results 1993 to 2001 and 2003 including summary sheet

Attachment B – Determination of total metals results

Attachment C – PCDD's and PCDF's results

5 Criteria

Coincident with the conduct of this biennial testing program of the ADAA, various discussions were ongoing with the DEC. This agency having consulted with the ADAA regarding proposed guidelines for the use of ash in agriculture, subsequently provided guidelines for a proposed criteria for nominated metals (total), dioxins and furans in correspondence dated 30 October 2003.

The proposed criteria are referenced and listed below:

(a) Fertilisers Act 1985 (Order No 2001/02 or 2001/07)

Cadmium	
Phosphatic Fertiliser	300 mg/kg of phosphorus
Non-phosphatic Fertiliser	10 mg/kg of non-phosphatic fertiliser
Liming Material	10 mg/kg of liming material
Lead	
Fertiliser	100 mg/kg of fertiliser
Liming Material	100 mg/kg of liming material
Mercury	
Fertiliser	5 mg/kg of fertiliser
Liming Material	5 mg/kg of liming material

Table 1 Criteria for Total Metals (a)

(b) Chlorinated dioxin and furan **TEQ limit of 100 ng/kg** as referenced for land application of biosolids in Europe.

6 Analytical Results

6.1 Total Metals (Cd, Pb, Hg)

The following table summarises the total metals (Cd, Pb, and Hg) for thirteen (13) randomly selected ash samples. NATA laboratory reports are included in **Attachment B**.

Sample ³ Number→	05- FAF	05- ROS	05- FAC	06- FAF	06- FAM	06- FAC	06- BA	10- CS	10- FM	11- FAX	01- BA	12- BA	13- BA
Metal \downarrow							mg	/kg					
Cd (10)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Pb (100)	5	5	4	4	4	<1	<1	1	<1	6	8	7	<1
Hg (5)	0.2	0.4	0.5	<0.1	< 0.1	<0.1	2.1*	<0.1	<0.1	0.4	<1	<1	<1
(Max Criterion mg/kg)													

Table 2 Total Metals Results

Refer to table 3 below.

Sample 06-BA was re-analysed four times to confirm elevated level for mercury. The results are presented below:

Table 3 Mercury Results for Sample 06-BA

Sample	Hg
06-BA	(mg/kg)
Repeat 1	0.5
Repeat 2	0.2
Repeat 3	<0.1
Repeat 4	0.2

This sample displays a fairly large degree of physical heterogeneity with:

- a mean of 0.6 mg/kg, and
- standard deviation of 0.8 mg/kg, (largely due to the initial 2.1 result),

and serves as a caution - without inferring the sample was collected incorrectly (indeed the sample has a gritty appearance) - that interpretation of Bottom Ash samples may rely greatly on correct sample collection and <u>particularly preparation procedure</u>.

³ Sample Nomenclature – the first two digits are the Participant, FA means Fly Ash, F/M/C means Fine/Medium/Coarse respectively, BA means Bottom Ash.

6.2 Leachate (TCLP) Results

A total of 54 samples were analysed for TCLP for the following analytes: The results have been collated and presented with NATA Laboratory Reports are included in **Attachment A**.

Silver	Cadmium	Lead	Zinc
Arsenic	Chromium	Antimony	Selenium
Barium	Copper	Thallium	Mercury
Beryllium	Nickel		

In addition to these results, historical data has also been incorporated. These analyses were conducted between 1993 and 2001 by AWT. This report cannot comment on the QA/QC for these analyses or sampling procedures but the results are included here for comparison purposes.

6.3 Dioxin and Furans

The following table summarises the dioxin and furan analyses for selected ash samples. NATA laboratory reports are included in **Attachment C**.

Table 4Dioxin and Furan Results

Sample Number→	4) ES 43607 (06-FAF)	5) ES 43607 (06-FAM)	10) ES 43607 (11-FAX)
I-TEQ (100)	1.65	2.73	2.25
(Maximum Criterion ng/kg)			

6.4 Sizing Analysis

Ten (10) samples were analysed for size against the % passing 45 μ m criterion to ascertain that the samples as labelled corresponded to the Australian Standard AS 3582.1—1998 grade classification. The results are shown below.

Sample Number→	05- FAF	05- ROS	05- FAC	06- FAF	06- FAM	06- FAC	06- BA	10- CS	10- FM	11- FAX	01- BA	12- BA	13- BA
% passing 45µm	N/A	73.6	N/A	N/A	N/A	N/A	10.2	8.5	N/A	92.5	3.8	3.7	2.6
Grade According to AS 3582.1— 1998	F	Μ	С	F	Μ	С	С	С	Μ	F	С	С	С

Table 5 Percent passing 45 µm

As can be seen from the table the Bottom Ash Samples are clearly all Coarse (C). The two finer grade samples are Medium (M), and Fine (F). Though it should be noted that 05-ROS is only slightly outside of being graded show slightly higher Mercury levels though the Lead remains without trend against the size criterion in this data set.

7 Discussion of Results

7.1 Total Metals

Ash samples were analysed for nominated total metals from four separate process locations and consisted of fine, medium, coarse and bottom ash, coarse sand and filter material.

If the ash material was considered a liming agent in terms of agricultural application, the levels of cadmium, lead and mercury reported in these samples are well below the proposed criteria, as referenced in the Fertiliser Act 1985. Indeed the analytical results are below all proposed criteria in this Act.

The bottom ash sample (06-BA) produced the highest mercury level (2.1 mg/kg) on its initial analysis. It was unclear from this one sample whether mercury had a propensity to move to bottom ash, so the sample was re-analysed. The four new analyses showed mercury ranged from not detected (<0.1 mg/kg) to 0.5 mg/kg. These results are lower than the original level of 2.1 mg/kg, which may indicate

the sample was not completely homogenous. All results are below the proposed mercury criterion and therefore not considered an issue.

05-ROS and 11-FAX were both finer grades and do indicate slightly higher Mercury at 0.4mg/kg than the Bottom Ash Samples. Though overall *Participant 05* showed slightly higher levels than the other samples tested.

Lead (Pb) results are all low. Cadmium (Cd) was not detected.

7.2 Leachate Results

The majority of the analytical results are below the detection limit for each analyte. The remaining results are just over the detection limit.

There are no standout results which significantly exceed the detection limit.

Since many results were reported as the limit of detection, no statistical analysis would be useful.

The historical leachate data (1993 – 2001) shows a similar trend. The majority of analytical results are very low, being below or just above the detection limit. There are no significantly high results.

7.3 Dioxin and Furans

The three ash samples which were analysed for dioxins and furans produced results which equate to "not detected." The low values in the relevant table above are conservative values representing the detection limit for each sample.

The NATA laboratory reports show a "not detected" result for each furan and dioxin.

In recent correspondence from the NSW EPA (now DEC) a chlorinated dioxin and furan TEQ limit of 100 ng/kg (100 pg/g) was referenced as proposed criterion for land application of biosolids in Europe. The results from this analysis programme are well below this proposed criterion.

7.4 Sizing Analysis

The sizing analysis indicates that of the seven (7) samples analysed, they fitted their labelled classification and no clear pattern could be ascertained from the concentration of metals and the fineness of the sample. Sizing analysis result are in **Attachment D**

8 Conclusions

8.1 Beneficial Use of CCPs in Agricultural Performance

This investigation aimed to examine some of the characteristics of CCPs as a reusable product. Other studies (notably in Western Australia) have described the beneficial effects of using CCPs to enhance agricultural performance.

8.2 Compliance with Acceptance Criteria

The analytical results presented here indicate that there may be a feasible opportunity to use CCPs as a secondary resource in agricultural applications.

- Not one acceptance criterion has been exceeded.
- No results of this investigation approach the maximum acceptable levels.

8.3 Sustainable Development

Where agricultural circumstances support the application of CCPs the environmental benefits of re-use as opposed to landfill containment, are significant.

Much of the literature for the beneficial use of CCPs in agricultural applications describes application rates with the soil in ratios of 5% to 20%. Application rates are modified according to soil type and the characteristic being modified (e.g. pH modification, drainage). Accordingly, these test results have been assessed against the liming material application as shown in Criteria for Total Metals (a) on p12.

9 Recommendations

These investigations demonstrate the potential for responsible and environmentally sustainable use of CCPs in the areas such as, civil engineering fills, raw materials for the cement and concrete production and for agricultural and horticultural purposes.

Importantly these results should be coupled with an appropriate ongoing monitoring program to assist regulatory authorities and the ADAA in building sound scientific evidence required for ongoing appropriate re-use of CCPs as a secondary resource.

To achieve this re-use benefit the following issues and recommendations require further clarification and development between the DEC and the ADAA:

• ADAA needs agreement with DEC and other authorities on the elements or species of concern, and their criteria.

- Environment authorities can in conjunction with relevant Agriculture departments review these results to:
 - o Clarify what other investigations are required, and then
 - Devise (with ADAA) CCPs specifications/guidelines for agricultural use.
- ADAA can modify, if required, this monitoring programme to address issues raised by Environment authorities.
- A product application scenario should be developed for when and how to use CCPs, and an agreed chemical/physical specification developed and approved by Environment and/or Agriculture agencies.

ATTACHMENT A

NATA LABORATORY REPORTS

TCLP results 1993 to 2001 and 2003 including summary sheet

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT: MR DAVID AYNSLEY CLIENT: ASH DEVELOPMENT ASSOCIATION ADDRESS: C/O ADAA SUITE 1,42 RAMAH AVE MT OUSLEY NSW 2519

ORDER No.: PROJECT: BATCH: SUB BATCH: LABORATORY: DATE RECEIVED: DATE COMPLETED: SAMPLE TYPE: No. of SAMPLES: ES43339 0 SYDNEY 07/11/2003 20/11/2003 TCLP LEACHATE 54

COMMENTS

The concentrations reported are those determined on the TCLP leachate.

Extraction fluid #1 pH 4.88-4.98.

NOTES

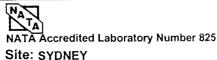
This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164
 Phone:
 61-2-8784 8555

 Fax:
 61-2-8784 8500

Email: cindy.suen@alsenviro.com


Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland Hong Kong Singapore Kuala Lumpur Bogor Mumbai Vancouver Santiago Antofagasta Lima

AMERICAS

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full

Page 1

of 9

	ิท
C	1
	٩

CERTIFICATE OF ANALYSIS

ı

ES43339 0 20/11/2003 ASH DEVELOPMENT ASSOCIATION

> Client: Client Reference:

Sub Batch: Date of Issue:

Batch:

									SAMPLE ID	SAMPLE IDENTIFICATION	NO			
			Laboratory I.D	ory I.D.	~	2	3	4	5	9	7	8	6	10
			Date Sampled	impled										•
					05-FAF	05-ROS	05-FAC	05-FAFD	05-ROSD	05-FACD	06-FAF	06-FAM	06-FAC	06-BA
METHOD	ANALY	ANALYSIS DESCRIPTION	UNIT	LOR										
AI S1	Initial nH			0.1	5.9	5.6	5.6	5.6	5.8	5.7	8.9	0.6	10.9	6.7
ALS?	After HCI nH			0.1	1.7	1.7	1.7	1.7	1.8	1.7	1.7	1.7	1.9	1.7
	Extraction Fluid Number	nid Number		Ţ			~~	-	~		-	-	-	-
ALCO AL SA	nH After Extract	act		0.1	5.2	5.2	5.2	5.2	5.2	5.2	5.3	5.5	6.9	5.2
FG-005C	Silver	- TCI P	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Arsanic	- TCI P	ma/L	0.1	0.3	0.2	0.2	0.2	0.2	0.2	<0.1	<0.1	<0.1	<0.1
EG_0050	Barium	- TCI P	ma/L	-	۲ ک	£	2	٢	v	2	v	5	Ý	2
	Bendlinm	- TCI P	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EC-0050	Cadmium	- TCI P	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-005C	Chromium	- TCLP	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-0050	Conner	- TCI P	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-005C	Nickel	- TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-005C	fead	- TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-0050	Antimony	- TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-0050	Thallium	- TCI P		0.1	0.1	0.1	0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1
EG-0050	Zinc	- TCI P	ma/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
EG-020C	Selenium	- TCLP	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-0250	Marciny	- TCI P	ma/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2222-01	INCIOUS J	- 76												

Page 2 of 9

ES43339

CERTIFICATE OI ANALYSIS

U

0 20/11/2003

Sub Batch: Date of Issue:

Batch:

ASH DEVELOPMENT ASSOCIATION

Client: Client Reference:

									SAMPLE ID	SAMPLE IDENTIFICATION	ZO			
			Laboratory I.D.	ory I.D.	11	12	13	14	15	16	17	18	19	20
			Date Sampled	mpled									-	
					11-FAX	07-A-FAC	07-A-BA	07-B-FAM	07-B-BA	07-C-FAF	07-C-BA	07-D-FAC	07-D-BA	07-E-FAC
METHOD	ANALYSI	ANALYSIS DESCRIPTION	UNIT	LOR										
ALS1	Initial nH			0.1	10.1	9.9	4.6	4.0	4.4	9.6	8.7	4.1	4.4	9.5
A1 C.7	After HCI nH			0.1	2.0	1.6	-			1.8	1.6			
AL32		d Number			,			<u>4</u>	~-	~ -	£	-	~	*
ALS3					. T	. t		5.1	5.1	5.7	5.4	5.1	5.1	5.1
ALS4	pH Arrer Extract		1				<0 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-005C	Silver	- ICLP	тіц/г						0.0	01	<0.1	<0.1	<0.1	<0.1
EG-005C	Arsenic	- TCLP	mg/L	0.1	0.7				4 Y	5	1	7	2	~
EG-005C	Barium	- TCLP	mg/L	~	2	7	5	5	5	<u>,</u>	,	7		1 0
EG-005C	Bervlium	- TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Cadmium	- TCI P	ma/L	0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Chromitum	- TCI P	l/pm	0.1	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Condition	101	- (/uu	10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Nickol		- 1,0m		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Nickel 1 and	- TCI P	- 1/DW	10	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Leau Antimoni	- 100	- 1/0 m	. 0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Thelling		- 1,6m		<01	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1
JCUU-2	Ę	- 105		- u		2.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
EG-005C		- 10LF	шÇ/г				, t	<01	<0.1 1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-020C	Selenium	- ICLP	mg/L		0.2					10.01	<0.01	<0.01	<0.01	<0.01
EG-035C	Mercury	- TCLP	mg/L	0.01	<0.01	<0.01	<0.01	<0.U1	<0.61	0.04	-0.07			

ES43339 0

20/11/2003 ASH DEVELOPMENT ASSOCIATION

Client Reference:

Date of Issue: Sub Batch: Batch:

Client:

CERTIFICATE OF ANALYSIS

									SAMPLE IDENTIFICATION	ENTIFICATI	NO			
<u></u>			Laborat	Laboratory I.D.	21	22	23	24	25	26	27	28	29	30
			Date Sa	Date Sampled										
					07-E-BA	07-F-FAM	07-F-BA	07-G-BA	02-FAF	02-BA	10-CS	10-FM	03-BA	03-FAF
METHOD	ANALY:	ANALYSIS DESCRIPTION	UNIT	LOR										
AI \$1	Initial nH			0.1	7.4	9.8	8.5	8.7	8.4	8.1	7.6	7.8	3.0	5.1
ALS'	After HCI nH			0.1	1.5	1.5	1.5	1.6	1.5	1.5	1.5	1.4		1.4
	Extraction Eluid Number	id Number			*	·		-	-		-	-	~	۴
AL33					5.1	5.3	5.2	5.4	5.1	5.1	5.1	5.1	5.0	5.1
	Cilvar		l/um	10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Arsenic	- 100	ma/i	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Datim		- /ow	-	V	Ŷ	Ŷ	5	2	Ŷ	ř	2	<u>۲</u>	2
	Dondlium	- 100	n'n'n	6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Codmine		1,6		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Caurinum	- 100	mg/L	5 6	<01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			ng/l	, c	- 0 V	0	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	0.1	<0.1
EG-005C	Copper		- 'ng'r		50 T	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-005C	NICKEI		mg/L		40 1	40 T	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Leau A atimonic		- 1,0 ma/l		< 01	0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Thalling	- 1051 -	- 1,6m	5 6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
			- 1/6m		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	201C		- () /) /)	0.0	5.0 1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Seletion		- illine	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
EG-035C	mercury	- 101	- IG'F											

	S
C	
	٩

CERTIFICATE ON ANALYSIS

ES43339 0

ASH DEVELOPMENT ASSOCIATION 20/11/2003

> **Client Reference:** Client:

Sub Batch: Date of Issue:

Batch:

			Laborat	Laboratory I.D.	31	32	33	34	35	36	37	38	39	40
			Date Sampled	moled	16/10/2003	16/10/2003	16/10/2003	15/10/2003	28/10/2003	22/10/2003	27/10/2003	30/10/2003	30/10/2003	30/10/2003
				_	13-FA1	13-FA2	13-FA3	13-BA	12-FAF	12-FAC	12-BA	02-FAC-Z1	02-FAM-Z2	02-FAM-Z3
MFTHOD	ANALYSIS E	ANALYSIS DESCRIPTION	UNIT	LOR										
ALS1	Initial nH	and a second		0.1	5.6	8.5	10.1	8.0	9.4	10.0	8.9	4.3	3.7	3.9
ALS?	After HCI nH			0.1	1.5	1.8	1.8	1.7	3.2	2.1	1.7			1
AL 53	Extraction Fluid Number	umher		÷	4 0	**	~	4m	<i>4</i> ~~	4	4	4	4	-
ALSA	nH After Extract			0.1	5.2	5.2	5.1	5.0	5.3	5.2	5.1	5.0	5.0	5.0
	Silver - TO	- TCI P	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-005C	c		ma/L	0.1	0.2	0.2	0.2	<0.1	0.4	0.2	<0.1	<0.1	<0.1	0.1
EG-005C		TCLP	ma/L		V	£	2	7	Ŷ	2	2	2	۲.	2
EG-005C	-	- TCI P	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-005C		- TCI P	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		- TCI P	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-0050		TCI P	ma/L	0.1	<0.1	0.1	<0.1	<0.1	0.4	0.3	<0.1	<0.1	0.2	0.3
EG-005C		- TCLP	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EG-005C		CLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		TCLP	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	¥.0	<0.1
EG-005C		TCLP	ma/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
EG-0200	E	- TCLP	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
)/uu	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Page 5 of 9

(SIV)
\sim

CERTIFICATE OF ANALYSIS

ES43339 0

Batch:

20/11/2003 ASH DEVELOPMENT ASSOCIATION

> Client: Client Reference:

Sub Batch: Date of Issue:

<0.1 <0.5 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 \$0.1 <0.1 <0.1 <0.1 10.1 1.9 <0.1 01-FAC 5.2 v -50 <0.1 01-FAM <0.01 <0.1 <0.1 <0.1 <0.5 \$0.1 <0.1 \$0.1 <0.1 10.2 <u>60.1</u> 0.2 2.6 5.3 0.2 v ۰. 49 <0.5 <0.01 01-FAF 0.2 0.2 60.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <u>6</u>.1 0.7 ř 8.8 3.0 5.7 -48 <0.5 04-BA ¢0.1 <u>6</u>.1 <u>^</u>0.1 <u>^0.1</u> <0.1 <0.01 <0.1 <u>6</u>.1 <u>60.1</u> <0.1 <0.1 0.1 5.1 v 3.8 47 SAMPLE IDENTIFICATION <0.5 <0.1 <0.1 <0.01 04-FAC <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 \$0.1 5.0 ٧ 3.1 ~ 46 24/10/2003 <0.5 <u>6</u>.1 04-FAM <0.1 <0.1 <0.1 \$0.1 <0.01 \$0.1 <u>6</u>0.1 0.2 5.0 <0.1 ٥.1 ۲.0 <0.1 3.0 v ---45 24/10/2003 <0.1 <u>6</u>.1 <u>6</u> \$0.1 <0.01 04-FAF \$0.1 5 <u>6</u> 0.6 0.2 4.9 <0.1 <0.1 v <0.1 \$0.1 2.9 44 31/10/2003 02-BA-AH ¢0.1 <0.5 <0.1 <0.1 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 5.1 ô.1 $\overline{\mathbf{v}}$ 6.3 1.7 -43 30/10/2003 02-FAF-Z5 <0.5 <0.1 <0.1 <0.1 <0.1 <0.01 5.0 6.1 <u>6</u>.1 <u>6</u>.1 <u>6</u>.1 0.3 ô. 0.2 3.6 v ----42 30/10/2003 02-FAF-Z4 <0.01 <0.1 <0.5 \$0.1 <0.1 <0.1 <0.1 °0.1 <u>6</u> <u>6</u>.1 <u>6</u>.1 0.3 5.0 0.1 v 3.7 4 LOR 0.5 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Laboratory I.D. 0.1 0.1 0.1 0.1 0.1 0.1 Date Sampled --UNIT mg/L ANALYSIS DESCRIPTION - TCLP Extraction Fluid Number - TCLP - TCLP TCLP - TCLP - TCLP - TCLP pH After Extract After HCI pH Chromium Selenium Beryllium Cadmium Antimony Thallium Initial pH Mercury Arsenic Copper Barium Vickel Silver -ead Zinc METHOD EG-005C EG-020C EG-035C EG-005C EG-005C ALS3 ALS4 ALS2 ALS1

>

Batch:

20/11/2003

Sub Batch: Date of Issue:

CERTIFICATE OI ANALYSIS

SAMPLE IDENTIFICATION <0.1 \$0.1 \$0.1 <0.1 <0.01 €0.1 <0.1 <u>60.1</u> <u>6</u>.1 12-BAD <0.1 0.6 8.9 5.1 \$0.1 \$0.1 1.8 v **** 5 12-FACD <0.5 <0.1 <0.01 5.3 <0.1 0.2 <1 <0.1 <0.1 <0.1 °.1 6.1 <0.1 <0.1 <0.1 10.3 2.9 -53 12-FAFD <0.5 <0.1 <0.01 <u>60.1</u> <u>د</u>0.1 0.3 0.1 <0.1 ×0.1 <0.1 5.4 ≤0.1 0.4 ~1 ^0.1 9.5 3.1 ----52 <0.5 01-BA <u>~0.1</u> <0.1 <0.1 \$0.1 <0.1 <0.01 <0.1 <0.1 <0.1 <u>\$0.1</u> ô.1 <u>6</u> 9.3 1.8 5.2 v 5 ASH DEVELOPMENT ASSOCIATION LOR 0.01 Laboratory I.D. 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 <u>.</u> 0.1 0.1 0.1 0.1 6.1 ----Date Sampled -UNIT mg/L ר שק/ר שק/ר שק/ר שק/ר שק/ר שק/ר mg/L mg/L mg/L mg/L ANALYSIS DESCRIPTION - TCLP Extraction Fluid Number - TCLP TCLP - TCLP - TCLP pH After Extract After HCI pH Chromium Cadmium Beryllium Selenium initial pH Antimony Thallium Client Reference: Mercury Arsenic Barium Copper Silver Nickel Lead Zinc METHOD Client: EG-005C EG-005C EG-005C EG-035C EG-005C EG-005C EG-005C EG-005C EG-005C EG-005C EG-005C EG-005C EG-005C EG-020C ALS1 ALS2 ALS3 ALS4

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

ES43339	0	20/11/2003	ASH DEVELOPMENT ASSOCIATION
Batch:	Sub Batch:	Date of Issue:	Client:

QUALITY CONTRUL REPORT

•

									SAMPLE IU	SAMPLE IDEN IFICATION	z			
			Laboratory I.D.	ory I.D.	-	٣	5	11	21	21	31	31	41	41
			Date Sampled	mpled										
					05-FAF	05-FAF	11-FAX	11-FAX	07-E-BA	07-E-BA	13-FA1	13-FA1	02-FAF-Z4	02-FAF-Z4
METHOD	ANALY	ANALYSIS DESCRIPTION	UNIT	LOR	MS	CHK	MS	CHK	MS	CHK	MS	CFK	MS	CHK
								0	CHECKS AND SPIKES	SPIKES				
ALS1	Initial pH			0.1	1	1	1	ļ	ì	1			1	
ALS2	After HCI pH	-		0.1	ł	I					1	1	1	1
ALS3	Extraction FI	Extraction Fluid Number		-	1			۲	!		-	~		*
ALS4	pH After Extract	ract		0.1		1		1			1	•		
EG-005C	Silver	- TCLP	mg/L	0.1	1	<0.1	1	<0.1	•	<0.1		<0.1	-	<0.1
EG-005C	Arsenic	- TCLP	mg/L	0.1	114%	0.2	118%	0.7	109%	<0.1	115%	0.2	101%	0.1
EG-005C	Barium	- TCLP	mg/L		80.0%	<u>۲</u>	102%	£	97.0%	2	99.0%	5	91.0%	5
EG-005C	Bervllium	- TCLP	mg/L	0.1	113%	<0.1	114%	<0.1	109%	<0.1	114%	<0.1	105%	<0.1
FG-005C	Cadmium	- TCLP	mg/L	0.1	107%	<0.1	102%	<0.1	104%	<0.1	107%	<0.1	%0.66	<0.1
EG-005C	Chromium	- TCLP	mg/L	0.1	105%	<0.1	105%	0.5	102%	<0.1	105%	<0.1	95.0%	<0.1
EG-005C	Copper	- TCLP	mg/L	0.1	101%	<0.1	98.0%	<0.1	96.0%	<0.1	96.0%	<0.1	86.0%	0.3
EG-005C	Nickel	- TCLP	mg/L	0.1	104%	<0.1	102%	0.1	102%	£.05	105%	<0.1	87.0%	<0.1
EG-005C	Lead	- TCLP	mg/L	0.1	101%	<0.1	98.0%	<0.1	100%	<0.1	102%	<0.1	93.0%	<0.1
EG-005C	Antimonv	- TCLP	mg/L	0.1		<0.1	I	<0.1		<0.1		<0.1		<0.1
EG-005C	Thallium	- TCLP	mg/L	0.1		<0.1		<0.1		<0.1	}	<0.1		<0.1
EG-005C	Zinc	- TCLP	mg/L	0.5	104%	<0.5	100%	<0.5	104%	<0.5	106%	<0.5	96.0%	<0.5
EG-020C	Selenium	- TCLP	mg/L	0.1	102%	<0.1	100%	0.2	100%	<0.1	102%	<0.1	106%	<0.1
FG-035C	Mercury	- TCLP	mg/L	0.01	109%	<0.01	109%	1	105%	-	109%		105%	1

ALS Environmental

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

ш	0	Date of Issue: 2
ES43339	0	20/11/2003

20/11/2003 ASH DEVELOPMENT ASSOCIATION

> Client: Client Reference:

											2		
							- Lo ad an arrest summer dense statistics		OAMIT LE IUEN IN TO TO TO		1	-	-
			Laborat	Laboratory I.D.	51	51	200	201	205	206	210	211	
			Date Sampled	ampled									
					01-BA	01-BA	METHOD	LCS1	METHOD	LCS2	METHOD	LCS3	
MFTHOD	ANALY	ANALYSIS DESCRIPTION	UNIT	LOR	WS	CHK	BLANK1		BLANK2		BLANK3		
									CHECKS AND SPIKES	SPIKES			
ALS1	Initial pH			0.1	1	1	1		1		1		
ALS2	After HCI pH			0.1	1	1		1	I		1	1	
ALS3	Extraction Fluid Number	uid Number		~		~	<i>4</i>	ŀ			4	ł	
ALS4	pH After Extract	ract		0.1		I	1		I	!	1	•	
FG-005C	Silver	- TCLP	mg/L	0.1		<0.1	<0.1		<0.1		<0.1	ł	
EG-005C	Arsenic	- TCLP	mg/L	0.1	110%	<0.1	<0.1	104%	<0.1		<0.1	103%	
EG-005C	Barium	- TCLP	mg/L	+	96.0%	2	2	%0 .66	2		£	%0.66	
EG-005C	Beryllium	- TCLP	mg/L	0.1	111%	<0.1	<0.1	1	<0.1	1	<0.1	!	
EG-005C	Cadmium	• TCLP	mg/L	0.1	101%	<0.1	<0.1	102%	<0.1		<0.1	102%	
EG-005C	Chromium	- TCLP	mg/L	0.1	101%	<0.1	<0.1	100%	<0.1	-	<0.1	%0.66	
EG-005C	Copper	- TCLP	mg/L	0.1	94.0%	<0.1	<0.1	101%	<0.1	1	<0.1	101%	
EG-005C	Nickel	- TCLP	mg/L	0.1	101%	<0.1	<0.1	101%	<0.1	1	<0.1	100%	
EG-005C	Lead	- TCLP	mg/L	0.1	95.0%	<0.1	<0.1	101%	<0.1		<0.1	100%	
EG-005C	Antimony	- TCLP	mg/L	0.1		<0.1	<0.1		<0.1	1	<0.1	I	
EG-005C	Thallium	- TCLP	mg/L	0.1	1	<0.1	<0.1		<0.1		<0.1		
EG-005C	Zinc	- TCLP	mg/L	0.5	102%	<0.5	<0.5	101%	<0.5	1	<0.5	100%	
EG-020C	Selenium	- TCLP	mg/L	0.1	102%	<0.1	<0.1	100%			1	1	
	Morching		1/200	0.01	03 0%		<0.01	105%	<0.01	103%	<0.01	104%	

ALS Environmental

QUALITY CONTK JL REPORT

ALS Environmental

CONTACT:	1
CLIENT:	
ADDRESS:	

ORDER No.: 3917 PROJECT: TCLP BATCH: SUB BATCH: LABORATORY: DATE RECEIVED: DATE COMPLETED: SAMPLE TYPE: No. of SAMPLES:

TEIT

BY:

27 NOV 2003

ES43460 0 SYDNEY 13/11/2003 25/11/2003 TCLP LEACHATE 4

COMMENTS

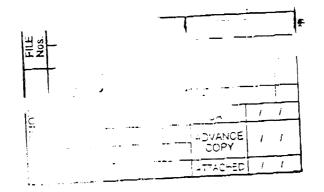
The concentrations reported are those determined on the TCLP leachate

Extraction fluid #1 pH 4.88-4.98.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY


Address

277-289 Woodpark Road SMITHFIELD NSW 2164 Phone: 61-2-8784 8555 Fax: 61-2-8784 8500

Email: cindy suen@alsenviro.com

الاستراب ومعتقبتهم والمنكر وتبعش والر

Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastlø Auckland Vancouver Santiago Antofagasta Lima

AMERICAS

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Hong Kong Singapore

Bogor Mumbai

Kuāla Lumpur

NATA Accredited Laboratory Number 825

Site: SYDNEY

This Laboratory is accordited by the National Association of Testing Authonities, Australia. The testisy reported herein have been performed in accordance with its terms of accordance. This account shall not be reproduced except in the

Client: TCLP Client Reference: TCLP Date Sampled				
Laboratory I.D. 1 Date Sampled				•
			SAMP! F IDENTIFICATION	
	200	201	202	
	13/11/2003	13/11/2003	13/11/2003	
OB-FAC OB-FAC	<u> </u>	LCS	WS	
METHOD ANALYSIS DESCRIPTION UNIT LOR MS CHK	BLANK			
			HEURA AND SPINES	
Initial pH 0.1 0.1	1	1	3	
After HCt pH 0.1		*****	ł	
Extraction Fluid Number		1,		
0.1		!		
	a	-		
Arsenic TCLP nig/L 0.1 112% *		101%	112%	
Barium TCLP mg/L 1 101%		%0.66	101%	
Beryllium TCLP mg/L 0.1 110%		1	110%	
Cadmium - TCLP mg/L 0.1 107%	· .=.	103%	107%	
Chromium TCLP nig/L 0.1 106%		101%	106%	
Copper . TCLP mg/L 0.1 99.0%		%0.66	%30-66	
105%		100%	105%	
Lead . TCLP mg/L 0.1 103%		102%	102%	
Antimony TCLP mg/L 0.1		ļ		
106%		101%	106%	
mg/L 0.1 106%		106%	106%	······································
		89.0%		
G-020C Thallium TCLP mg/L i 0.1 0.1				

í

(

Australian Laboralory Services Pty Ltd (ABN 84 309 936 029)

ALS Environmental

Page 3 of 3

ES43460	(

Í

25/11/2003

0

Batch: Sub Batch: Date of Issue:

Client:

(

CERTIFICATE OF ANALYSIS

Client Re	Client Reference:	TCLP								
									SAMPLE IDENTIFICATION	
			Labora	Laboratory I.D.		5	c	4		
			Date Sampled	ampled						
					OB-FAC	OB-FAM	OB-FAF	OB-BA		
METHOD	ANALYS	ANALYSIS DESCRIPTION	UNIT	LOR						
LS1	Initial pH			0.1	4.0	3.6	3.9	5.9		
LS2	After HCI pH			0.1	1	1	;	1.7		
LS3	Extraction Fluid Number	Jid Number		-	-	، -		-		
LS4	pH After Extract	act		0.1	5.0	5.0	5.0	5.0		
G-105C	Silver	- TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0,1		
G-105C	Arsenic	TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1		
G-105C	Banum	TCLP	mg/L	-	2	5	2	7		
G-005C	Beryllium	TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1		
G-005C	Cadmium	.TCLP	mg/L	.0.1	<0.1	<0.1	<0.1	<0.1		
G-015C	Chromium	LCLP	ղյեր Մ	0.1	<0.1	<0.1	-0 ⁻	<0.1		
G-005C	Copper	· TCLP	T/gm	0.1	<0.1	<0.1	0.6	<0.1		
G-005C	Nickel	- TCLP	ենո	0.1	<0.1	<0.1	<0.1	<0.1		
G-005C	Lead	- TCLP	աց/Լ	0.1	<0.1	<0.1	<0.1	<0.1		
G-005C	Antimony	TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1		
G-005C	Zinc	TCLP	mg/L	0.5	<0.5	<0.5	1.0	<0.5		,
G-020C	Selenium	TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1		J
G-020C	Thallium	TCLP	mg/L	0.1	<0.1	<0.1	<0.1	<0.1		
G-035C	Mercury	TCLP	mg/L	0.01	<0.01	<0.01	<0.01	<0.01		

P.03

....

99%

TCLP Results

																	[
Selenium	ma/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	₹0.1 •	<0.1	<0.1 <	€. 0
			•														
Mercury	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <	0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <	0.01	<0.01

Page 1

31	5		<0.1	0.2	$\overline{\mathbf{v}}$	<0.1	<0.1	<0.1	<0.1	€0.1	<0.1	÷.0	\$0.1	<0.5		₹.		<0.01]
	13-FA1						V			_									
30	03-FAF		\$0.1	<0.1	7	<0.1 €0.1	\$0.1	<0.1	<0.1	ò.	<0.1	<0.1 <0.1	\$0.1	<0.5		1		<0.01	1
29	03-BA		<0.1	- 1 0 2	v	¢0.1	<0.1	<0.1	0.1	<0.1	0 1	<0.1	0.1	<0.5		V 0	Ş	<0.01	
28	10-FM		<0.1		V	÷0,	<u>\$0.1</u>	¢01	¢0,1	0		0	- C V	202 V		101		<0.01	- 22
27			102	, , V	; V	- 1 1	0	v 1	v V					- <u>-</u>	2.2	101		10.01	1.0.0
26			101												2.2		₽	140.01	10.0
25			14 01												0.0		€0.1	100	10.0
70		-		0.1											0.05		<u>0</u>	100	€0.01
	07-F-BA 07-		•	0.1		V					0.1	0.1 1	1 1		l¢.0>		€. 0		<0.01
Ç		FAM		, ,		√			0.1	1.0	Ç.	ç.		. .	<0.5		<0.1	L	<0.01
		_					1				, 1	, 1	<u>, 1</u>		<0.5		<0.1		<0.01
	21 07-E-BA			õ	ô					ç	Ŷ	Â	V						
	20 07-E-	FAC		<0.1	<0.1	7	<u>0</u>	Ç.	¢.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5		<0.1		<0.01
	19 07-D-RA	5		<0.1	<0.1	v	<0.1	€. 0	<0.1	<0.1	<0.1 ≤0.1	<0.1	<0.1	<0.1	<0.5		<0.1		<0.01
	18 07-D- 07	FAC		<0.1 <	<0.1	۲	<0.1	<0.1	<0.1	<0.1	<u>^0.1</u>	<0.1	<0.1	<0.1	<0.5		¢0.1		<0.01
-		4 49-7-70		<0.1	<0.1	₹ V	<0.1	<0.1	<0.1	6 <u>.</u> 1	<0.1	<0.1	<0.1 1</td <td>0.1</td> <td><0.5</td> <td></td> <td><0.1</td> <td></td> <td><0.01</td>	0.1	<0.5		<0.1		<0.01
	16 07-C- 27			<0.1	0.1	۲	<u>6.1</u>	<u>*0.1</u>	÷.0	<01	100	÷0,	100	0,	<0.5		<0.1		<0.01
	20	Ē		110		-	0.1							- -	0.5	2.5	110	-	0 01
											1								- 1/5
	<u>.</u>)er		I'noul	1/200	1/2 1/2	- Mor		1/000		-1/5				1/000	1211		1/6/11	1/0m1
	ES43339	Sample Number		- Con	Arconic	Al Set IIU	Dariun		Chrominum Chrominum		Copper	Nickel	eau			7110		Seleniuri	Morount

<u>1</u> 2	
5	
ŝ.	
~	
Ω.	
7	
9	
	

Page 2

4-FAF 04-FAM 04-FAC 04-BA
02-FAF- 02-BA- 04-FAF 0 Z5 AH 04-FAF 0
02-FAM- 02-FAF- 02-FA Z3 Z4 Z5
02-FAC- 02-FAM- 71 Z2
12-FAC 12-BA
13-BA 12-FAF
13-FA2 13-FA3

Page 3

TCLP Results

TCLP Results

54	P-BAD
53	CD 13
	12-FA
52	01-BA 12-FAFD 12-FACD 12-BAD
51	01-BA
50	01-FAC
49	01-FAF 01-FAM
48	01-FAF

Batch Number -ES43339 Sample Number

Cilver	l/nm/	0 11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arconic	1/0/1		0.7	0.2	<0.1	<0.1	0.4	0.2	<0.1
Aloci Inc	1,000		V	V	V	۲	V	Ł	v
Darium		- C	<01 1	0 1	<0.1	<u>^0.1</u>	<u>^0.1</u>	<0.1	<0.1
Delymout		0	-0 -	÷.0 0	<0.1	<u>^0.1</u>	<0.1	<0.1	<0.1
Chromiter	- /ou	6	0.2	€. 0	<0.1	<0.1	<0.1	<0.1	<0.1 6
Conder	- //um	0	0.2	0.2	<u>^</u> 0.1	<0.1 €0.1	0.3	0.2	\$0.1 1
Nickel	1/000		¢ t	<0.1	ç.	<0.1	<0.1	<0.1	<0.1
	1/2000		Ç V	₹0 7	\$0.1	\$0.1	<0.1 €0.1	<0.1	<0.1
<u>A stimony</u>	1/2/1			Ş	÷0,	<0.1	€0.1 1	<0.1	\$0.1 \$
Thellium	11/04	i i i i		-0v	<0.1 1</td <td><u>\$0.1</u></td> <td><0.1 ▲0.1</td> <td><0.1</td> <td>₹0.1 2</td>	<u>\$0.1</u>	<0.1 ▲0.1	<0.1	₹0.1 2
Zinc	ma/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6
21117	1								
Salanium	l/ma/l	0.1	<0.1	¢0.1	<0.1 0.1	<0.1	<0.1	€. 1	€. 1

<0.1	<0.01
<0.1	<0.01
<0.1	<0.01
<0.1	<0.01
<0.1	<0.01
<0.1	€0.01
<0.1	<0.01
0.1	0.01
mg/L	mg/L
Selenium	Mercury

Page 4

	M M M	0.005 0.005
	9988TBe Beryllium TM11WW mg/L	
r N	9004TTI Thallium TM11WW mg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
	<u>د) ک</u>	0.22 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
	3771TAg Silver√ TM11WW mg/L	0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
AWT	3751TSe Selnium TM11WW mg/L	55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
(1993-2001) conducted אא AWT	3741TNi Nickel < TM11WW mg/L	710 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03
condu	3691TPb Lead TM11WW mg/L	150 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.
3-2001)	3621TCu Copper TM11WW mg/L	<pre><250 0.046 0.107 0.029 0.089 0.089 0.047 0.019 0.019 0.139 0.019 0.018 0.019 0.016 0.018 0.018 0.018 0.019 0.016 0.016 0.018 0.008 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.008 0.018 0.008 0.018 0.008 0.018 0.008 0.018 0.008 0.018 0.008 0.018 0.008 0.018 0.008 0.018 0.008 0.018 0.008 0.</pre>
	3571TCd 3601TCr 3621TCu Cadmium Chromium Copper V TM11WW TM11WW TM11WW mg/L mg/L mg/L	7.00 0.00 0.019 0.019 0.010 0.010 0.010 0.010 0.010 0.012 0.0000000000
Tesul	3571TCd Cadmium √ TM11WW mg/L	 A.0.5 0.005
TCLP testinc	3531TBa Barium / TM11WW mg/L	 <1500 <1500 0.257 0.056 0.0568 0.658 0.658 0.658 0.658 0.342 0.369 0.394 0.394 0.394 0.394 0.394 0.394 0.226 0.394 0.226 0.394 0.226 0.394 0.226 0.291 0.291 0.291
TCLP	3521TAs Arsenic TM11WW mg/L	550 0.11 0.025 0.027 0.027 0.027 0.028 0.027 0.0280 0.0280 0.0280 0.0280000000000
	3511TSb 3521TAs Antimony Arsenic TM11WW TM11WW mg/L mg/L	15 16 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
	کر 3721THg Mercury TM01NS ug/L	0000 0000 0000 0000 0000 0000 0000 0000 0000
	1993-1997	Client Sample D S C C P O Z Г A Г H G T M D C P O Z R A Z C C P O Z C P O Z R A Z C C P O Z R A Z C C P O Z R A Z C C P O Z R A Z C C P O

Printed on : 04/10/03 Checked By: CH

0.005 0.005 0.005 0.005	<pre><15 0.005 0.005 0.000</pre>
0.14 0.16 0.19 0.23	<pre><5 0.096 0.05 0.051</pre>
0.28 0.22 0.19 0.40	<500 0.357 0.14 0.349
0.01 0.01 0.01 0.01	0.010 0.01 ERR
0.05 0.09 0.15 0.11	<pre><5 0.071 0.02 0.048</pre>
0.0 0.04 0.02 0.05	<100 0.032 0.02 0.039
0.34 0.18 0.09 0.02	<150 0.061 0.02 0.073
0.210 0.426 0.098 0.026	<250 0.104 0.019 0.107
0.02 0.06 0.03 0.01	<pre><100 0.063 0.068 0.068</pre>
0.005 0.005 0.005 0.005	<0.5 0.005 0.005 0.001
0.254 0.091 0.315 0.916	 <1500 0.386 0 0.334
0.24 0.44 0.17 0.07	<50 0.208 0.02 0.387
0.03 0.09 0.04 0.18	<150.0340.020.041
0.1 0.2 0.6	<pre><0.5</pre> 0.3430.10.384
ZOML	SCC Average Mode Std Dev

۰,

ATTACHMENT B

NATA LABORATORY REPORTS

Determination of total metals results

Page 20 of 26

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT: MR CRAIG HIEDRICH CLIENT: ASH DEVELOPMENT ASSOCIATION ADDRESS:

P O BOX 1194 WOLLONGONG NSW 2500 BATCH: 0 SUB BATCH: LABORATORY: DATE RECEIVED: DATE COMPLETED: SAMPLE TYPE: No. of SAMPLES:

ES43607 SYDNEY 24/11/2003 02/12/2003 SOIL 10

ORDER No.: PROJECT:

COMMENTS

Samples as received digested by USEPA method 200.2 (modified) prior to the determination of metals. Results reported on a dry weight basis. All analysis and Laboratory QC conducted in accordance with Schedule B(3) NEPM Guideline on Laboratory Analysis of Potentially Contaminated Soil (December 1999).

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164

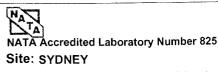
Phone: 61-2-8784 8555 Fax: 61-2-8784 8500 cindy.suen@alsenviro.com Email:

Signatory

With

LABORATORIES

AUSTRALASIA


Brisbane Melbourne Sydney Newcastle Auckland

Hong Kong Singapore Kuala Lumpur Bogor Mumbai

Vancouver Santiago Antofagasta Lima

AMERICAS

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

This Laboratory is accredited by the National Association of Testing Authorities, Australia The teatis, reported herein have been performed in accordance with its terms of accreditation. This obcument shall not be reproduced except in full

ALS

CERTIFICATE OF ANALYSIS

ES43607 0

Batch:

Sub Batch: Date of Issue:

02/12/2003 ASH DEVELOPMENT ASSOCIATION

> Client: Client Reference:

							SAMPLE IDENTIFICATION	ENTIFICATI	CN			
	Labo	Laboratory I.D.		7	3	4	5	9	7	8	6	10
	Date	Date Sampled					:					
			05-FAF	05-ROS	05-FAC	06-FAF	06-FAM	06-FAC	06-BA	10-CS	10-FM	11-FAX
METHOD ANALYSIS DESCRIPTION	ON UNIT	LOR										1
Ň	() %	0.1	<0.1	<0.1	0.1	0.2	0.1	0.1	22.4	5.3	4.5	<0.1
		~	Ž	2	2	2	2	v	۲ ۲	Ŷ	2	V
	mg/kg	~~	5	5	4	4	4	2	5	*	2	9
Mercury	mg/kg	0.1	0.2	0.4	0.5	<0.1	<0.1	<0.1	2.1	<0.1	<0.1	0.4

ALS Environmental

Batch:

Date of Issue: Sub Batch:

QUALITY CONTROL REPORT

SAMPLE IDENTIFICATION 24/11/2003 24/11/2003 201 200 -02/12/2003 ASH DEVELOPMENT ASSOCIATION Laboratory I.D. Date Sampled **Client Reference:** Client:

		-	•							
				05-FAF		METHOD				
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	MS	CHK	BLANK				
		_					Ū	CHECKS AND SPIKES		
							}			-
EA-055	Moisture Content (dried @ 103'C)	%	0.1		<0.1	1			 	
EG-005T	Cadmium - Total	mg/kg		103%	2	2	109%			
EG-005T	Lead - Total	mg/kg	-	102%	5	2	102%		 	
EG-035T	Mercury - Total	mg/kg	0.1	103%	0.3	<0.1	103%		 	

ATTACHMENT C

NATA LABORATORY REPORTS

PCDD's and PCDF's results

Page 21 of 26

. . . .

Wellington Office P.O. Box 31 242 1B Bell Road, Lower Hutt Phone: 64 4 5708800 Facsimile: 64 4 5708176

17 December 2003

Certificate of Analysis

Client:	ALS Pty Ltd
	Locked Bag 106
	Wetherill Park VC
	NSW 1851
	Australia
Attention:	Greg Vogel
Date Received:	25 Nov 2003
AgriQuality Lab. Reference:	2640
Sample Type:	Solid
Analysis:	Polychlorinated dibenzo-p-dioxins (PCDDs) Polychlorinated dibenzofurans (PCDFs)
Method:	Based on USEPA Method 1613B (Isotope Dilution)

Results are reported in picograms per gram (pg/g), equivalent to ppt, on an as received basis to two significant figures. The DL value is reported to one significant figure. Results have been corrected for recoveries. The sum of PCDDs and PCDFs is calculated and reported to three significant figures both including and excluding DL values.

The total toxic equivalence (I-TEQ) was calculated for each sample using international toxic equivalency factors (I-TEFs). The total I-TEQ level is reported both including and excluding the DL values.

Unless requested, samples will be disposed of three months from the date of this report.

h Lawrence Porter

Lawrence Porter IANZ Signatory AgriQuality

International Accreditation New Zealand (JANZ) has a Mutual Recognition Agreement (MRA) with the National Association of Testing Authorities (NATA), Australia, such that both organisations recognise accreditations by JANZ and NATA as being equivalent. Users of test reports/certificates are recommended to accept test reports/certificates in the name of either accrediting body.

Date Analysed U2: 12 Dec 2003Analysed SP2331: Not applicableC13C%RELCL-UCLQualifiers8824 - 169
Analysed SP2331: Not applicable
C ¹³ C%RE LCL-UCL Qualifiers
·····
88 24 - 169
88 25 - 164
87 35 - 197
79 24 - 185
82 21 - 178
82 25 - 181
99 26 - 152
93 26 - 123
105 28 - 136
97 29 - 147
114 32 - 141
101 28 - 130
85 28 - 143
90 26 - 138
20-138
88 23 - 140
88 25-140
62 17 - 157
62 17 - 157
62 17 - 157 ximum Units
ximum Units
ximum Units 3 pg/g
ximum Units
ximum Units 3 pg/g
ximum Units 3 pg/g 5 pg/g
ximum Units B pg/g 5 pg/g Sample Specific Estimated Detection Limit Estimated Maximum Possible Concentration
ximum Units B pg/g 5 pg/g Sample Specific Estimated Detection Limit Estimated Maximum Possible Concentration Labelled Compound Recovery
ximum Units B pg/g 5 pg/g Sample Specific Estimated Detection Limit Estimated Maximum Possible Concentration
8

Date Received: 2	25 Nov 2003		Dat	e Analysed I	2: 09 Dec 20	03
				-		
Date Extracted: (J8 Dec 2003		Date An	alysed SP233	1: Not applic	
Analyte	Conc. (pg/g)	DL	EMPC	¹³ C%RE	LCL-UCL	Qualifiers
2378 TCDF	ND	0.8		51	24 - 169	
Total TCDF	ND	0.8			المتحدي وتوالمتحديق	
2378 TCDD	ND ND	1		60	25 - 164	
Total TCDD	ND	2				
					0.6 10.5	
37CI TCDD				92	35 - 197	
					A 105	
12378 PeCDF	ND	0.9		51	24 - 185	
23478 PeCDF	ND	0.4		54	21 - 178	
Total PeCDF	ND	0.9			0.5	
12378 PeCDD	ND	0.6		57	25 - 181	
Total PeCDD	ND	0.6				
	2.00			(0)	26 152	
123478 HxCDF	ND	0.7		60 52	26 - 152	
123678 HxCDF	ND	0.8		52 43	26 - 123 28 - 136	
234678 HxCDF	ND					
123789 HxCDF	ND	1		40	29 - 147	
Total HxCDF				70	32 - 141	
123478 HxCDD	ND ND	0.7		58	28 - 130	
123678 HxCDD	ND	0.8 0.7			28 - 150	
123789 HxCDD	ND	0.7				
Total HxCDD	ND	0.0				
1024679 HaCDE	ND	0.9		45	28 - 143	
1234678 HpCDF	ND ND	1		46	26 - 138	
1234789 HpCDF	ND	1		199 . TO	20-150	
Total HpCDF 1234678 HpCDD	ND	2		48	23 - 140	
Total HpCDD	ND	2			23 1.10	
OCDF	ND	2				
OCDD	ND ND	$\frac{2}{20}$		34	17 - 157	
		- 	- 33 3		n a Thir an Caterrina (Au	
		Minimum	Maxim	um Ur	nits	
Sum of PCDD and I	PCDF congeners:	0	28.8	pg	/g	
Total I-TEQ:	-	0	2.73	pg	/g	
		11	DI . 0			taation I imit
+ = Results are report	rted on an as receive	ed basis			Estimated De	
ND = Not Detected		10			num Possible	
		13	C %RE: Lab	elled Compo	und Recovery	
					imit - Upper (Control Limit
		³⁷ CL	TCDD: Clea	an-up recover	rv spike	

THIS REPORT MUST ONLY BE REPRODUCED IN ITS ENTIRETY

Laboratory Reference: 2640-3

Sample Identification: 10) ES43607

Date Received:	25 Nov 2003		Date Analysed U2: 09 Dec 2003					
Date Extracted:	08 Dec 2003		Date An	alysed SP233	1: Not applie	cable		
Analyte	Conc. ⁺ (pg/g)	DL	EMPC	¹³ C%RE	LCL-UCL	Qualifiers		
2378 TCDF	ND	0.7		92	24 - 169			
Total TCDF	ND	0.7						
2378 TCDD	ND	0.8		93	25 - 164			
Total TCDD	ND	0.8						
37Cl TCDD				94	35 - 197			
12378 PeCDF	ND	0.4		87	24 - 185			
23478 PeCDF	ND	0.4		88	21 - 178			
Total PeCDF	ND	0.4						
12378 PeCDD	ND	0.8		87	25 - 181			
Total PeCDD	ND	0.8						
123478 HxCDF	ND	0.8		98	26 - 152			
123678 HxCDF	ND	0.8		89	26 - 123			
234678 HxCDF	ND	0.8		102	28 - 136			
123789 HxCDF	ND	1		91	29 - 147			
Total HxCDF	ND	r te ⊀aese e 1						
123478 HxCDD	ND			105	32 - 141			
123678 HxCDD	ND	1		91	28 - 130			
123789 HxCDD	ND			/1	20 - 150			
Total HxCDD	ND	2014 - 101 1						
1024678 HacDE	ND	1 1		90	28 - 143			
1234678 HpCDF	ND	L 		90 91	26 - 143			
1234789 HpCDF	ND	1 I I I I I I I I I I I I I I I I I I I		91	20 - 138			
Total HpCDF	ND	1		00	D2 140			
1234678 HpCDD	ND	2		89	23 - 140			
Total HpCDD	ND Marine and the second	2						
OCDF	ND	2		00	17 177			
OCDD	ND	50		80	17 - 157	la de la deservición de la des		
		Minimum	Maxim	um Un	its			
Sum of PCDD and	PCDF congeners:	0	59.1	pg/	g			
Total I-TEQ:	0	0	2.25	pg/	'g			
	orted on an as receive	d basis				tection Limit		
•	Sited off all as receive	u 0asis		1 1				
ND = Not Detected		1				Concentration		
		1	³ C %RE: Lab	elled Compor	und Recovery			
		L	CL-UCL: Low	er Control L	imit - Upper (Control Limit		
			L ₄ TCDD: Clea					
			-4	"P 1000.01	J ~r*			
Lab Analyst: TG	Data Analyst: A	AS	Authorised: 1	Lawrence Por	rter			

Report Ref: 301293

Final

THIS REPORT MUST ONLY BE REPRODUCED IN ITS ENTIRETY

Laboratory Reference: 2640 BLANK

Sample Identification: Laboratory Blank

Date Received:	Not applicable		Dat	e Analysed	d U2: 09 Dec 20)03
Date Extracted:	08 Dec 2003		Date An	alysed SP2	2331: Not appli	cable
Analyte	Conc. [†] (pg/g)	DL	EMPC	¹³ C%RI	E LCL-UCL	Qualifiers
2378 TCDF	ND	0.5		93	24 - 169	
Fotal TCDF	ND	0.5				
2378 TCDD	ND	0.7		92	25 - 164	
Fotal TCDD	ND	0.7				
37Cl TCDD				88	35 - 197	
12378 PeCDF	ND	0.6		102	24 - 185	
23478 PeCDF	ND	0.6		102	21 - 178	
Total PeCDF	ND	1				
12378 PeCDD	ND	0.6		101	25 - 181	
Fotal PeCDD	ND	0.6				
123478 HxCDF	ND	0.6		101	26 - 152	
123678 HxCDF	ND	0.6		94	26 - 123	
234678 HxCDF	ND	0.6		104	28 - 136	
123789 HxCDF	ND	0.8		93	29 - 147	
Fotal HxCDF	ND	3				
123478 HxCDD	ND	1		109	32 - 141	
123678 HxCDD	ND	1		91	28 - 130	
123789 HxCDD	ND	1				
Fotal HxCDD	ND	6				
1234678 HpCDF	ND	0.7		94	28 - 143	
1234789 HpCDF	ND	1		88	26 - 138	
Total HpCDF	ND	3				
1234678 HpCDD	ND	6		95	23 - 140	
Total HpCDD	ND	9				
OCDF	ND	2				
OCDD	ND	50		62	17 - 157	
		Minimum	Maxim	um	Units	
Sum of PCDD and	PCDF congeners:	0	72.1		pg/g	
Total I-TEQ:	I ODI CONSCHOIS.	0	2.07		pg/g	
+ = Results are cal of samples in th	culated using the aver his batch	-		• •	fic Estimated De ximum Possible	
ND = Not Detected		¹³ C	C %RE: Lab	elled Com	pound Recovery	/
					l Limit - Upper	
			TCDD: Clea			
		CL_4		an-up 1000	very spike	

Final

.

Analyte	I-TEFs		
2378 TCDF	0.1	Agri Q	uali
Total TCDF	0		<u>x 3 × 5 × 6</u>
2378 TCDD			
Total TCDD	0		
12378 PeCDF	0.05		
23478 PeCDF	0.5		
Total PeCDF	0 		
12378 PeCDD	0.5		
Total PeCDD	0		
123478 HxCDF	0.1		
123678 HxCDF			
234678 HxCDF	0.1		
123789 HxCDF	0.1		
Total HxCDF			
123478 HxCDD	0.1		
123678 HxCDD	0.1		
123789 HxCDD	0.1		
Total HxCDD	0		
1234678 HpCDF	0.01		
1234789 HpCDF	0.01 0		
Total HpCDF			
1234678 HpCDD	0.01		
Total HpCDD			
OCDE	0.001		
OCDF			
OCDD	0.001		
I-TEFs	= International toxic equivalency factors		
I-TEQ	= Total toxic equivalence		

I-TEFs: USEPA Method 1613B

ATTACHMENT D

Sizing Distribution Analysis

Page 22 of 26

Construction Materials

ABN 51 000 756 507

MATERIALS TECHNICAL SERVICES BORAL RESOURCES (NSW) PTY. LTD. Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153 Telephone (02) 9624 9900 Facsimile (02) 9624 9999

www.boral.com.au

Client: Ash Development Association of Australia

File No.: 135 / 04

PARTICLE SIZE ANALYSIS REPORT

Request No.: **16315** Laboratory Sample Numbers: 45106, 45107, 45108, 45109, 45110, 45111, 45112

<u>Job description:</u> Particle size analysis <u>Sample description:</u> 05-ROS; 11-FAX; 06-BA; 10-CS; 01-BA; 12-BA; 13-BA

RESULTS

Seven ash samples have been submitted for particle size analysis and tested using a Mastersizer 2000 particle size analyzer.

The fly ash samples 05-ROS and 11-FAX have been analysed in "as received" conditions, while the coarser grade bottom ash samples have been screened and the pass on the 1.7mm sieve was analysed for particle size distribution.

The results obtained for the characteristic diameters of the samples are summarized in the table below, and plotted in **Figure 1**.

	Sample 05-	Sample 11-	Sample 06-	Sample 10-	Sample 01-	Sample 12-	Sample 13-
	ROS (as	FAX (as	BA	ĊS	BA	BA	ΒA
	received)	received)	(screened	(screened	(screened	(screened	(screened
			to <1.7mm)				
D (10%), µm	5.1	1.8	44.6	52.8	79.7	84.7	132.1
D (50%), µm	24.0	11.1	301.2	314.7	266.6	379.0	634.9
D (90%), µm	85.0	40.0	987.9	1007.3	790.9	999.1	1330.3
Mean	37.8	17.1	422.0	433.9	363.1	469.1	691.9
diameter, µm							

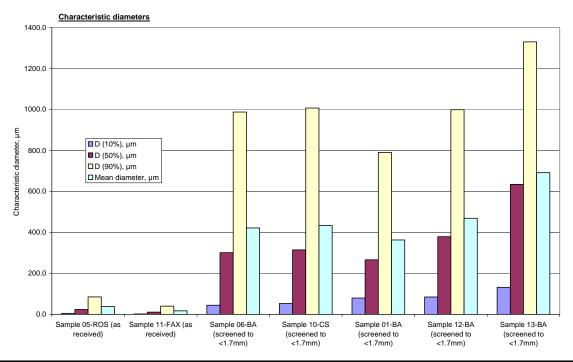


Figure 1: Characteristic diameters

The particle size distribution of the samples is presented in **Figure 2**, while the cumulated pass curves are presented in **Figure 3**. The cumulated pass trends of the original samples are plotted in **Figure 4**, with the results being obtained by correcting the cumulated pass results post-sieving with the >1.7mm residue figures (Note: this correction is based on an assumed uniform-density distribution).

The processed Excel source data file is also provided electronically.

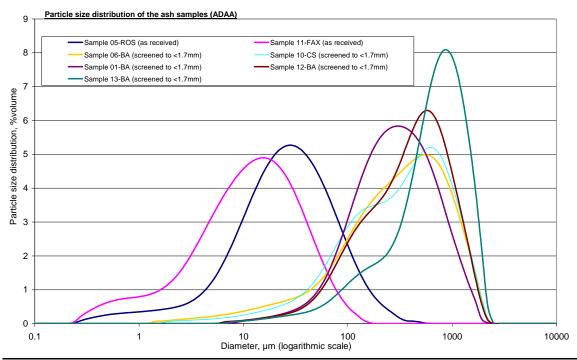


Figure 2: Particle size distribution

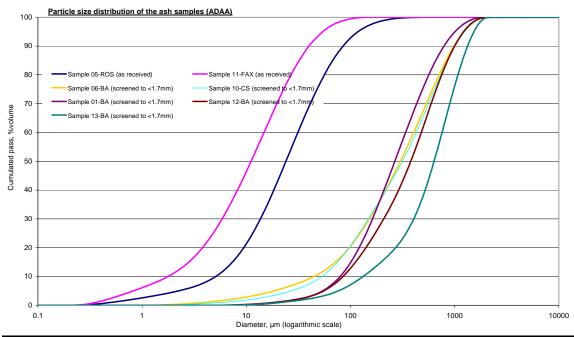


Figure 3: Cumulated pass

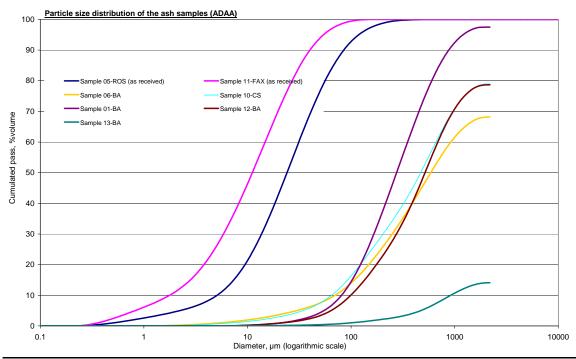


Figure 4: Cumulated pass curves, corrected for >1.7mm residue

Valentina Paraschiv Senior Development Engineer 27.02.2004

C.Heidrich, File R&D, File